TURBULENCE IN THE MAGNETIZED INTERSTELLAR MEDIUM

Perm, 5-8 September 2006

Saturation and quenching in alpha-square dynamo

Peter Frick, Rodion Stepanov ICMM, Perm, Russia, and Dmitry Sokoloff Moscow State University Moscow, Russia

$\frac{\textbf{Galactic Dynamo}}{\Omega}$

Differential rotation

$$B_T \xrightarrow{\alpha} B_P$$

Helicity

Magnetic helicity conservation

Growth of large-scale Component and compensation by small-scale one

Nonlinear saturation of dynamo

Alpha-quenching

Current helicity observations at Huairou

More than 1 cycle monitoring

Fig. 3. The time dependence of the latitude-averaged function $\langle \chi^c \rangle$ for $D = -10^3$, $\sigma = 1$, C = 0.01 and $\kappa = 0.1$. The observed values of the latitude-averaged function $\langle H_c \rangle$ are shown by filled squares (for $\Theta > 0$ – Northern hemisphere, lower panel) and filled circles (for $\Theta < 0$ – Southern hemisphere, upper panel), the error-bars for $\langle H_c \rangle$ are shown by vertical lines. Dashed-dotted line indicates the time dependence of the latitude-averaged function $-6\langle B^2 \rangle$. The filled diamonds in the lower panel give the scaled averaged group sunspot numbers, R_g – see text for further details.

A Shell-Spectral Model of Galactic Dynamo

$d_t B_P = i k_L \alpha B_T - k_L^2 \beta B_P,$ $d_t B_T = -i k_L \alpha B_P - k_L^2 \beta B_T.$

Simplest model of a large-scale dynamo (alpha-square) In principle, it could be any other spectral or grid model

$$\alpha = \alpha^u + \alpha^b$$
.

$$\begin{split} & (d_t + \frac{k_n^2}{\text{Re}})u_n \ = \ ik_n \Big\{ u_{n+1}^* u_{n+2}^* - b_{n+1}^* b_{n+2}^* + \frac{1-\lambda}{\lambda^2} (u_{n-1}^* u_{n+1}^* - b_{n-1}^* b_{n+1}^*) - \frac{1}{\lambda^3} (u_{n-2}^* u_{n-1}^* - b_{n-2}^* b_{n-1}^*) \Big\} + F_n \\ & (d_t + \frac{k_n^2}{\text{Rm}})b_n \ = \ \frac{ik_n}{\lambda(1+\lambda)} \Big\{ (u_{n+1}^* b_{n+2}^* - b_{n+1}^* u_{n+2}^*) + (u_{n-1}^* b_{n+1}^* - b_{n-1}^* u_{n+1}^*) + (u_{n-2}^* b_{n-1}^* - b_{n-2}^* u_{n-1}^*) \Big\} + G_n. \end{split}$$

Based on conservation laws of MHD + Kolomogorov description of turbulence

Conjugation

The conditions describe the redistribution of conserved values between large- and small-scale variables

Shell model: helicities and spectra

FIG. 1: Simulations of the shell model of forced MHD turbulence. Evolution of (a) hydrodynamic helicity χ^u , and (b) normalized cross-helicity $\bar{\chi}^c$. The energy spectra (c) for velocity field (black dots) and magnetic field (gray dots). The solid line shows the Kolmogorov's spectrum slope.

Shell model: Mirror asymmetry C and helicities

FIG. 2: Mean hydrodynamic helicity $\langle \chi^u \rangle$ (black) and mean current helicity $\langle \chi^j \rangle$ (gray) versus the parameter *C* defining the mirror asymmetry of the shell model. Any mean magnetic field is absent.

FIG. 3: (Color online) Time series for the mean magnetic field energy (thick black line), small-scale magnetic energy E^{b} (green line) and kinetic energy E^{u} (red line). Horizontal rows correspond to C = 0, 0.04, 0.16 (from top to bottom). Vertical columns correspond to $k_{L} = 1/2, 1/8, 1/32$ (from left to right). Magnetic field does not contribute to α -effect ($\alpha^{B} = 0$). In black and white printing out: E^{b} - gray, E^{u} - black.

$$C(\tau) = \frac{\int \widetilde{E}^B(t)\widetilde{\alpha}^u(t+\tau)dt}{(\int (\widetilde{E}^B)^2(t)dt\int (\widetilde{\alpha}^u)^2(t)dt)^{1/2}},$$

FIG. 4: Cross-correlation function of the large scale magnetic field and α^u for C = 0.08; $k_L = 1/2$ (solid) and $k_L = 1/16$ (dashed).

FIG. 5: (Color online) Time series for the mean magnetic field energy, small-scale magnetic energy and kinetic energy for the same parameters as in Fig. 3 but under the constraint that only the magnetic field contributes to the α -effect ($\alpha^u = 0$). Notations are the same as in Fig. 3.

FIG. 6: (Color online) Time series for the mean magnetic field energy, small-scale magnetic energy and kinetic energy for the same parameters as in Fig. 3, but in the case of *both* contributions to the α -effect ($\alpha = \alpha^u + \alpha^b$). Notations are the same as in Fig. 3.

FIG. 7: Mean values of turbulent kinetic energy (empty boxes), turbulent magnetic energy (filled diamonds) and large-scale magnetic energy (crosses) versus magnetic Prandtl number. Re = 10^6 , C = 0.08, $k_L = 1/16$. (a) the case of *both* contributions to the α -effect ($\alpha = \alpha^u + \alpha^b$), (b) magnetic field does not contribute ($\alpha = \alpha^u$).

FIG. 8: (Color online) Time series (top row) and energy spectra (bottom row) of magnetic (gray dots) and kinetic (black dots) fields for some magnetic Prandtl numbers $Pm = 3 \cdot 10^{-3}, 10^{-5}, 3 \cdot 10^{-8}$ (from left to right column) and $Re = 10^{6}$. Value of the large-scale magnetic field energy is denoted with large gray dot.

FIG. 9: Critical magnetic Reynolds number Rm_c for the largescale α^2 dynamo (large black circles) and small-scale turbulent dynamo (small black circles) versus Reynolds number Re $(C = 0.08, k_L = 1/16)$. Results of DNS by Schekochikhin et al. [28] are shown by croses, results of Ponty et al.[30] are shown by open circles. SM results of Stepanov and Plunian [31] are given by stars.