Galactic magnetic field reconstruction form the Faraday rotation measures

Rodion Stepanov

with

Peter Frick Anvar Shukurov Dmitry Sokoloff

DFG-RFBR project: "Magnetized ISM probed by radio emission: a quantitative analysis of interstellar turbulence "

Tomography: reconstruction form integral projections

• Faraday rotation measure (an integral estimator)

$$RM(l,b,s) = K \int_{0}^{3} (n_e \overline{B})(l,b,s') \cdot \overline{ds'} \qquad (n_e B_{\parallel})(l,b,s) = \frac{\partial RM(l,b,s)}{\partial s}$$

Inhomogeneous coverage of the Galaxy

• Any acceptable model of B must satisfy (statistically) all the data

How to combine pulsars and EGRS?

• New variable: distance \rightarrow "optical depth" (normalized DM)

$$q(l,b,s) = \int_{0}^{s} g(l,b,s')ds'$$
$$g(x,y,z) = \operatorname{sech}(z/h)^{2} \frac{\operatorname{sech}(\sqrt{x^{2} + y^{2}}/A)^{2}}{\operatorname{sech}(S_{O}/A)^{2}}$$

$$RM(l,b,s) \rightarrow RM(l,b,q)$$

• Distribution of pulsars & EGRS in coordinates (q_x, q_y, q_z)

view from top

view from side

How to improve the result?

Use wavelets to perform a reconstruction

noise filtering
differentiation of the signal (with minimum damage, Stepanov et al., A&A,2002)
spiral pattern recognition (applied for spiral arms im M51, Patrikeev et al., A&A,2006 (accepted))

Mathematics

The 2D wavelet differentiation technique A&A 2002

Wavelet transform is the convolution product analyzed function with wavelets.

$$w(\bar{r}_0, a) = a^{-2} \int n_e B_{||}(\bar{r}) \Psi_{\bar{r}_0, a}(\bar{r}) d^3r = a^{-2} \int A[RM(\bar{r})] \Psi_{\bar{r}_0, a}(\bar{r}) d^3r$$

A[.] - differential operator along line-of-sight

$$w(\bar{r}_{0},a) = a^{-2} \int RM(\bar{r}) F[\Psi_{\bar{r}_{0},a}(\bar{r})] d^{3}r = a^{-2} \int RM(\bar{r}) \widetilde{\Psi}_{\bar{r}_{0},a}(\bar{r}) d^{3}r$$
$$\widetilde{\Psi}_{\bar{r}_{0},a}(\bar{r}) \equiv F[\Psi_{\bar{r}_{0},a}(\bar{r})] \quad \text{-new family of wavelets}$$

Anisotropic wavelet

$$\Psi(\bar{r} = \{x, y, z\}, h) = (1 - x^2)e^{-\frac{1}{2}\left(x^2 + \left(\frac{y}{h}\right)^2 + z^2\right)}$$

Vector form

$$\overline{\Psi}(\overline{r},h,b) = \{0, Cos(b), Sin(b)\}\Psi(\overline{r},h)$$

Contour surfaces for

- $\Psi=0.3$ red
- $\Psi=-0.3$ blue

$$w(\overline{r}_0, a, \varphi, b, h) = a^{-2} \int n_e B_{\parallel}(\overline{r}) \quad T_{r_0} D_a R_{\varphi} \overline{\Psi}(\overline{r}, h, b) \cdot d^3 \overline{r}$$

Model for (B ne)

Line-of-sight component

RM from model

Wavelet decomposition of model RM

but calculated only in source position

with isotropic wavelet

with anisotropic wavelet

with anisotropic wavelet in vector form

What are the results from wavelet analysis?

Reconstruction with wavelets: scale 0.5 kpc and pitch angle 20°

Remarks

- More sources are necessary for better statistics
- •Low latitude EGRS's are more important to measure RM

