Simulation and analysis of polarized synchrotron emission maps

André Waelkens, Torsten Enßlin, Alexander Schekochihin, Ronnie Janssen, Glennys Farrar

Max-Planck Institut für Astrophysik

turbulence in the magnetized ISM

4 D N 4 B N 4 B N 4 B

- Hammurabi, the galactic synchrotron sky simulation code
- Stokes-correlators, analysing PI maps

Polarized galactic synchrotron sky simulation tool

Part 1: The Hammurabi code

What we get!

Ingredients:

- thermal electron density model (NE2001, Cordes & Lazio 2002)
- cosmic ray electron density (WMAP3, GALPROP?, our own)
- magnetic field models (several)

Compilation of input models

● WMAP 3th year (Page et al. 2006) ← this talk!

- magnetic field
- cosmic ray electron distribution
- Prouza and Smida 2003
 - magnetic field
- Stanev 1987
 - magnetic field
- and others...

examples

regular magnetic field - wmap-3 model

$\vec{B}(r,\phi,z) = B_0[\cos\psi(r)\,\cos\chi(z)\hat{r} + \sin\psi(r)\,\cos\chi(z)\hat{\phi} + \sin\chi(z)\hat{z}]$

Waelkens et al. (MPA)

cosmic ray electrons – wmap-3 model

power-law energy distribution in an exponential disk:

$$n_e = n_0 \exp(-r/h_r) \operatorname{sech}^2(z/h_d).$$

scale height: $h_d = 1$ kpc radial scale length: $h_r = 5$ kpc n_0 unspecified

Page et al. (2006)

WMAP 3

polarization direction

Page et al. 2006

WMAP 3

polarization direction

Page et al. 2006

イロト イヨト イヨト イヨト

examples

WMAP 3

イロト 不良 とくほとくほう

examples

WMAP 3

PI maps

Page et al. 2006

Waelkens et al. (MPA)

Simulation and analysis of synchrotron sky

Perm 2006 11 / 30

イロト イヨト イヨト イヨト

Waelkens et al. (MPA)

Simulation and analysis of synchrotron sky

Perm 2006 12 / 30

Waelkens et al. (MPA)

Simulation and analysis of synchrotron sky

Perm 2006 14 / 30

Waelkens et al. (MPA)

Simulation and analysis of synchrotron sky

Perm 2006 15 / 30

ヘロト 人間 とくほとくほど

イロト イヨト イヨト イヨト

Waelkens et al. (MPA)

Simulation and analysis of synchrotron sky

Perm 2006 17 / 30

イロト イヨト イヨト イヨト

WMAP 3

RM maps

Johnston-Hollitt et al. 2004

Perm 2006

イロト イヨト イヨト イヨト

18/30

Simulation and analysis of synchrotron sky

Waelkens et al. (MPA)

WMAP 3

Excessive RM!

Our approach

Maximum code resolution is a \sim cubic cell of $\sim 64 pc^3.$ We need subgrid modeling:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Part 2: Analysing polarized intensity maps

We would like to see whether there is information about the magnetic field encrypted in PI maps.

What is the scenario?

We hope to be able to find somewhere something like this:

Figure: Cross section of the field strength in the saturated state of a simulation of homogeneous isotropic MHD turbulence (run B in Schekochihin et al 2004)

• • • • • • • • • • • • •

A first explorative attempt

We propose to investigate the power spectrum of the Lorentz force.

$$rac{1}{c}(ec{J} imesec{B})=-
abla(rac{B^2}{8\pi})+rac{1}{4\pi}\left[(ec{B}
abla)ec{B}
ight]$$

In particular (the magnetic tension-force)

$$ec{F}=rac{1}{4\pi}\left[(ec{B}
abla)ec{B}
ight]$$

A first explorative attempt

magnetic tension-force

$$ec{F} = rac{1}{4\pi} \left[(ec{B}
abla) ec{B}
ight]$$

"tension-force" correlations:

$$\hat{\Phi}_{im}(ec{k}) = <\hat{F}_i(ec{k})\hat{F}_m(ec{k}')> = (2\pi)^3\delta(ec{k}+ec{k}')k_jk_n\hat{C}_{ij,mn}(ec{k}')$$

Where,

$$C_{ij,mn}(ec{r}) = < B_i(ec{x}_1) B_j(ec{x}_1) B_m(ec{x}_2) B_n(ec{x}_2) >$$

and,

$$r = |\vec{r}| = |\vec{x}_1 - \vec{x}_2|$$

A first explorative attempt

Originaly there are 26 functions, simplified by symmetries to seven unknown:

$$\hat{C}_{ij,mn}(k) = \hat{C}_{1}(k)\delta_{ij}\delta_{mn} + \hat{C}_{2}(k)(\delta_{im}\delta_{jn} + \delta_{in}\delta_{jm}) + \hat{C}_{3}(k)(\delta_{ij}\hat{k}_{m}\hat{k}_{n} + \delta_{mn}\hat{k}_{i}\hat{k}_{j}) + \hat{C}_{4}(k)(\delta_{im}\hat{k}_{j}\hat{k}_{n} + \delta_{in}\hat{k}_{j}\hat{k}_{m} + \delta_{jm}\hat{k}_{i}\hat{k}_{n} + \delta_{jn}\hat{k}_{i}\hat{k}_{m}) + \hat{C}_{5}(k)\hat{k}_{i}\hat{k}_{j}\hat{k}_{m}\hat{k}_{n} + \hat{C}_{6}(k)(\epsilon_{imp}\hat{k}_{p}\delta_{jn} + \epsilon_{inp}\hat{k}_{p}\delta_{jm} + \epsilon_{jmp}\hat{k}_{p}\delta_{in} + \epsilon_{jnp}\hat{k}_{p}\delta_{im}) + \hat{C}_{7}(k)(\epsilon_{imp}\hat{k}_{p}\hat{k}_{j}\hat{k}_{n} + \epsilon_{inp}\hat{k}_{p}\hat{k}_{j}\hat{k}_{m} + \epsilon_{jmp}\hat{k}_{p}\hat{k}_{i}\hat{k}_{n} + \epsilon_{jnp}\hat{k}_{p}\hat{k}_{i}\hat{k}_{m})$$

Observables: Stokes parameter:

$$I(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x^2(\vec{x}) + \delta B_y^2(\vec{x})\right)$$
$$Q(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x^2(\vec{x}) - \delta B_y^2(\vec{x})\right)$$
$$U(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x(\vec{x}) \delta B_y(\vec{x})\right)$$

... and their six correlation functions (Notice! It is a projection!):

$$\Sigma_{II}(\vec{r}_{\perp}), \Sigma_{QQ}(\vec{r}_{\perp}), \Sigma_{UU}(\vec{r}_{\perp}), \Sigma_{IQ}(\vec{r}_{\perp}), \Sigma_{IU}(\vec{r}_{\perp}), \Sigma_{QU}(\vec{r}_{\perp})$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Observables: Stokes parameter:

$$I(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x^2(\vec{x}) + \delta B_y^2(\vec{x})\right)$$
$$Q(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x^2(\vec{x}) - \delta B_y^2(\vec{x})\right)$$
$$U(\vec{x}_{\perp}) = \int_{z_0}^{\infty} dz \left(\delta B_x(\vec{x}) \delta B_y(\vec{x})\right)$$

... and their six correlation functions (Notice! It is a projection!):

$$\hat{\Sigma}_{II}(\vec{k}_{\perp}), \hat{\Sigma}_{QQ}(\vec{k}_{\perp}), \hat{\Sigma}_{UU}(\vec{k}_{\perp}), \hat{\Sigma}_{IQ}(\vec{k}_{\perp}), \hat{\Sigma}_{IU}(\vec{k}_{\perp}), \hat{\Sigma}_{QU}(\vec{k}_{\perp})$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The symmetric part of the tension-force correlation tensor is fully encoded in the data, i.e. the tension-force power spectrum is:

$$\hat{\Phi}_{ii}(\vec{k}_{\perp}, 0) = \frac{1}{4} k^2 \left[\hat{\Sigma}_{II}(\vec{k}_{\perp}) + \hat{\Sigma}_{QI}(\vec{k}_{\perp}) \right. \\ \left. + \hat{\Sigma}_{IQ}(\vec{k}_{\perp}) + \hat{\Sigma}_{QQ}(\vec{k}_{\perp}) + 8\hat{\Sigma}_{UU}(\vec{k}_{\perp}) \right]$$

This demonstrates that the method obtains physically relevant information on MHD turbulence from polarization data!

The symmetric part of the tension-force correlation tensor is fully encoded in the data, i.e. the tension-force power spectrum is:

$$\hat{\Phi}_{ii}(\vec{k}_{\perp}, 0) = \frac{1}{4} k^2 \left[\hat{\Sigma}_{II}(\vec{k}_{\perp}) + \hat{\Sigma}_{QI}(\vec{k}_{\perp}) \right. \\ \left. + \hat{\Sigma}_{IQ}(\vec{k}_{\perp}) + \hat{\Sigma}_{QQ}(\vec{k}_{\perp}) + 8\hat{\Sigma}_{UU}(\vec{k}_{\perp}) \right]$$

This demonstrates that the method obtains physically relevant information on MHD turbulence from polarization data!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

summary

- synchrotron sky simulation tool (Hammurabi code)
 - small scale magnetic field requires more sofisticated modeling
- Stokes correlation method
 - there is physicaly relevant information encoded in PI maps
 - we will be looking fro scenario that accomodates our assumptions in the intra cluster medium.

Thank you!

Waelkens et al. (MPA)

Perm 2006 30 / 30

<ロ> (日) (日) (日) (日) (日)

depolarisation: synchrotron vs. dust

 $g_{sync}(\hat{n}) = rac{P(\hat{n})}{\prod_{s} l(\hat{n})}$ (geometric suppression)

 $\Pi_s = (p+1)/(p+7/3) \approx 0.75$ (intrinsic polarization fraction) $P(\hat{n}) = \sqrt{Q^2 + U^2} \& I(\hat{n})$ from LOS integration

depolarisation: wmap calc. vs. our calc.

 $g_{sync}(\hat{n}) = \frac{P(\hat{n})}{\prod_{s} I(\hat{n})}$ (geometric suppression)

 $\Pi_s = (p+1)/(p+7/3) \approx 0.75$ (intrinsic polarization fraction) $P(\hat{n}) = \sqrt{Q^2 + U^2} \& I(\hat{n})$ from LOS integration

depolarisation: wmap calc. vs. our calc. + wrong $I(\hat{n})$

 $g_{sync}(\hat{n}) = rac{P(\hat{n})}{\prod_{s} l(\hat{n})}$ (geometric suppression)

 $\Pi_s = (p+1)/(p+7/3) \approx 0.75$ (intrinsic polarization fraction) $P(\hat{n}) = \sqrt{Q^2 + U^2} \& I(\hat{n})$ from LOS integration

