Modelling of depolarization effects in the ISM

Antonina Zamorina

Perm State Technical University, Russia

Rodion Stepanov

Institute of Continuous Media Mechanics, Russia

How to interpret the results of radioastronomical observations?

(Andrew Fletcher & Anvar Shukurov, 2006)

What is relationship between spectral properties of interstellar magnetic fields and spectral characteristics of radio polarization maps?

Parameters adopted in the simulation

The area of calculations is a cub (side L = 0.5 kpc) with periodic conditions.

Grid size 256^3 pixels Cell size 1 pixel = 1/512 kpc

Various input data of ISM components: magnetic field B in μ G, the thermal and relativistic electron density ne and nc in cm⁻³ correspond with different modelling examples.

3-Dimensional magnetic field model

- We adopted a power-law energy spectra $E(k) \propto \left| k \right|^{\alpha}, \quad E(k) = \int_{\left| k \right|}^{\alpha} B^{2}(k) dk, \quad k = \{k_{x}, k_{y}, k_{z}\}$ - wave vector
- Condition div(B)=0 $\hat{B}(\overset{P}{k}) \cdot \overset{P}{k} = 0,$ The magnetic field: $\hat{B}(\overset{P}{k}) = \frac{\overset{P}{k} \times \overset{P}{a}}{\overset{P}{k} \times \overset{P}{a}} \cdot |\overset{P}{k}|^{\frac{\alpha-2}{2}}, \quad \overset{P}{a} = \{a_x, a_y, a_z\} \text{ where } a_y, a_y, a_z\}$

 \dddota - random vector with uniform distribution all along sphere; is then transformed back into the real space using a three-dimensional Fast Fourier Transform

Mathematics

total intensity of synchrotron emission

$$I(x,y) = \int_{0}^{h} n_c B_{x,y}^{2} dz$$

h in kpc is depth, B in μG_{i} the thermal and relativistic electron density ne and nc in cm^-3

intrinsic polarization angle and Faraday rotation measure

$$\psi_0(x,y,z) = \operatorname{arctg}\left(\frac{B_y}{B_x}\right) + \frac{\pi}{2} \quad RM(x,y,z) = 812 \int_0^z n_e B_z dz' \quad \text{rad } \text{m}^{-2}$$

observed polarization angle $\psi(x, y, z) = \psi_0(x, y, z) + RM(x, y, z) \cdot \lambda^2$, wavelength λ in m

Stokes parameters Q, U $Q(x, y) = \int_{0}^{h} n_{c} B_{x,y}^{2} \cos(2\psi) dz \quad U(x, y) = \int_{0}^{h} n_{c} B_{x,y}^{2} \sin(2\psi) dz$ polarized intensity $PI(x, y) = \sqrt{Q^{2} + U^{2}}$

Modelling examples

- Superposition waves with various *Ψ*₀ along the line-of-sight input data Bz=0, Bx,By by blue Eq.
- Differential Faraday rotation input data Bx,By,Bz by blue Eq.
- Faraday depolarization input data Bx=By, Bz by blue Eq.

here: ne=1 cm⁻³, nc=1 cm⁻³, B in μ G, spectral index α = -3/3, -5/3, -7/3

Bz=0, superposition waves with various Ψ_0 along the line-of-sight

energy spectra of PI and P $\alpha = -5/3$

α	Spec I	Spec PI	Spec P
-3/3	-1.62534	-1.06146 -1.61193	-0.72462 -1.46605
-5/3	-2.54772	-0.96882 -2.54244	-1.33520 -2.57445
-7/3	-3.30891	-1.42527 -3.38714	-1.68656 -3.50907

Differential Faraday rotation

lpha	Spec I	Spec PI / Spec P					
-5/3	-2.54553	-1.66217 -2.62766	-1.80743 -2.62766	-1.16452 -2.61019	-1.1119 -1.25287	-1.18258 -0.269594	
		-1.28729 -2.50803	-1.40553 -2.50803	-0.651715 -2.57716	-0.604273 -1.20733	-0.786703 -0.198728	
λcm		5	10	20	30	50	

Faraday depolarization

α	Spec I	Spec PI / Spec P				
-5/3	-2.47741	-2.47477	-2.45111	-1.28428 -2.65949	-1.14727 -1.37875	-0.957736
		-2.50036	-2.3895	-0.893354 -2.62577	-0.781678 -1.25355	-0.731107
λcm		5	10	20	30	50