MHD-DYNAMO EXPERIMENTS

Peter Frick

Sergey Denisov, Vitaliy Noskov, Stanislav Khripchenko, Rodion Stepanov, Dmitry Sokoloff

Laboratory of Hydrodynamics, Institute of Continuous Media Mechanics, Perm, RUSSIA

DYNAMO IN LABORATORY

$$Re = \frac{UL}{v} - Reynolds number$$

$$Rm = \frac{UL}{v_m} - magnetic Reynolds number$$

$$Rm^* \approx 30 - 100$$

$$P_m = \frac{v}{v_m} - magnetic Prandtl number$$

$$P_m \approx 10^{-5} (Na)$$

DYNAMO EXPERIMENTS

- Riga cylindrical crew dynamo (2000)
- Karlsruhe two-scale dynamo (2000)
- Cadaraches VKS2 (Von Karman flow in a cylinder)
- Madison S2T2 flow in a sphere
- Mariland Couette-Taylor flow in a 3m sphere
- Los Alamos alpha-omega dynamo
- Perm nonstationary toroidal screw-dynamo

Karlsruhe experiment

Karlsruhe experiment

A two-scale dynamo₇₀

1 mT = 10 gauss

Roberts, *Phil. Trans. Roy. Soc. London* A271 (1972)

Stieglitz, Müller *Phys. Fluids*, **13** (2001)

French Project - the Von Kármán experiments for MHD

dissipation

Gallium (VKG) (ENS Lyon)

Socium (VKS)

-

(CEA Cadarache)

Petrelis et al., PRL 90, 174501 (2003)

FIG. 1. Geometry of the experimental setup. The flow is generated by rotating only one disk either at position (1) or (2). The magnetic field is measured at position S.

FIG. 2. Components of the total mean magnetic field as a function of the rotation frequency of disk (2). The disk radius is R = 150 mm with straight blades. Four baffles are mounted on the inner wall of the cylindrical vessel. The magnetic field is measured at z = 100 mm. $[(\bigcirc) \frac{\langle B_x \rangle}{B_o}; (\blacksquare) \frac{B_o + \langle B_y \rangle}{B_o}; (\blacktriangle) \frac{\langle B_z \rangle}{B_o}]$.

Volk et al., PRL 97, 074501 (2006)

FIG. 1. Geometry of the experimental setup. Location of the magnet (M) and of the Hall probe (P). The magnet can be put in the bulk of the flow if the probe P is removed.

FIG. 3. Evolution with the rotation frequency of the increments of the mean values of components $\langle B_i \rangle (\Omega/2\pi) - \langle B_i \rangle \times$ $(\Omega/2\pi = 8 \text{ Hz}), \langle B_x \rangle (\diamond), \langle B_y \rangle (\triangle), \langle B_z \rangle (\star), \text{ and standard}$ deviations, B_{xrms} (\bigcirc), B_{yrms} (\square), B_{zrms} (\star). Linear fits of the standard deviations with dashed lines.

The Madison Dynamo Experiment

1 m diameter

200 Hp

The Madison Dynamo Experiment

Nornberg et al., PRL 97, 044503 (2006)

FIG. 1 (color online). A schematic of the Madison dynamo experiment with superimposed magnetic field lines of the theoretically predicted dominant magnetic eigenmode.

FIG. 3 (color online). Contours of $B_r(\theta, \phi)$ measured on the surface of the sphere. The applied field is subtracted from the measurements. This snapshot of the measured field corresponds to an induced dipole field transverse to the drive shaft axis.

Nornberg et al., PRL 97, 044503 (2006)

FIG. 4. Time series of the energy in the transverse dipole field for an impeller rotation rate of 10 Hz. The diamonds mark the peak of a burst where the energy exceeds 50% of its maximum value.

FIG. 6. Kinematic growth rate versus Rm for the mean flow measured in the water experiment (solid line) and an optimized flow (dashed line). The vertical lines identify Rm_{crit} for each case. The PDFs of Rm for flows with three different impeller rotation rates are shown to demonstrate the increasing overlap of the ranges of Rm and Rm_{crit} .

Mariland Couette-Taylor experiment

PERM: SCREW DYNAMO IN A BRAKED TORUS

- Energy accumulation
- Pulse screw flow
- Toroidal geometry

GOALS: - peculiarities of Ponomarenko dynamo in a torus; - nonstationary dynamo action.

Rm = 40

ADVANTAGES:

- small mass of Na;
- low power supply;
- no sealing glands;

DISADVANTAGES:

- short duration;
- conducting boundaries problem;
- high power breaking system;
- materials for the channel;
- measurement problems.

EXPERIMENTAL SET-UPS

	Water A	Water B	Ga	Na
Radius of the torus, (m)	0.103	0.154	0.088	0.4
Radius of the cross-section, (<i>m</i>)	0.027	0.04	0.023	0.12
Mass of the channel, (kg)	5.6	24.5	15.3	300
Moment of inertia, $(kg \cdot m^2)$	0.072	0.58	0.132	50
Mass of fluid, (kg)	1.25	4.86	5.58	115
Moment of inertia, $(kg \cdot m^2)$	0.018	0.15	0.045	20
Frequency of rotation, (<i>R.P.S.</i>)	50	30	50	50
Maximal velocity, (m/s)	32	29	27	140
Effective Re	10 ⁵	$5 \cdot 10^{5}$	$5 \cdot 10^5$	$4 \cdot 10^{6}$
Effective Rm	-	-	1.5	40
Minimal braking time, (s)	0.1	0.18	0.05	0.1
Energy of rotation, (<i>J</i>)	$4.4 \cdot 10^3$	$17.3 \cdot 10^3$	$6.6 \cdot 10^3$	10^{6}
Dissipation power, (<i>Wt</i>)	$4.4 \cdot 10^4$	$8.7 \cdot 10^4$	$1.3 \cdot 10^{5}$	10 ⁷
Temperature, (°C)	20	20	20	120

WATER EXPERIMENT

MHD channel: thickness of the wall

 ξ - parameter of velocity profiles

$$v(r) = \frac{\cosh(\xi) - \cosh(r\xi)}{\cosh(\xi) - \cosh(0)}$$

MHD channel: conductivity

$$\xi = 18$$

Strengths in rotating channel

		Cu	AI	D16
Plasticity factor	$\delta_{eqv}^n = \sigma_n / \max(\sigma_{eqv})$	0.36	0.34	6.2
Load factor	$\delta_{eqv}^m = \sigma_m / \max(\sigma_{eqv})$	1.12	0.78	8.0

- **AI** is destructed under centrifugal forces
- Cu does not destroy but experiences plastic deformation
- D16 is not destructed and deforms elastically

Characteristics of the stress-strain state (main metal – D16)

	Sodium (Na)	Toroidal channel (D16)	Shell (Ti)	Brake disc (Fe)	Total
Mas Fleg Dal Na	5 8	153	31/20	24	266/255
Moment of inertia kg m ²	5.6	17.2	3.6/2,2	6.0	32.4/31
Kinetic energy, kJ	280	850	180/110	290	1600/1530
Mean overheat,°C				120/114	
Load factor		6.5/10.6	4.3/2.5	4.3/4.6	
Plasticity factor		5.1/8.2	3.7/2.2	3.7/4.0	

* - Model 1/Model 2

PROBLEMS: Dal-Na contact, embrittlement

R

Engineering development and design

Chromium copper БрХ-1

Properties

- Conductivity 86% of pure copper conductivity
- Ultimate stress limit 450-470Mpa

Technology

- Fusion
- Hot Rolling
- Hardening
- Cold Rolling
- Artificial deterioration (ennoblement)

The breaking system

Temperature of the disk surface

The torus

GALLIUM EXPERIMENT

 $R_{0} = 0.0875m$ $r_{0} = 0.0225m$ $M_{Ga} = 5.58kg$ $I_{max} = 2kA$ (DC and AC)

Transverse field 50Gs

-typical time evolution of the radial component *Br* measured by the 3D static probe at location 2 for different diverters;

- Maximal values of *Br* (mr probe, diamonds) and *Bz* (mz probe, dots) versus *Rm* (left diverters).

- B_r component measured at locations 1, 2 and 3 for negative rotation and left diverters;

- sketch of the field induced by the poloidal vortex;

- B_z component measured at locations 1, 2 and 3 for negative rotation and left diverters.

small-scale helicity

Toroidal field 35Gs

$$B_{even} = (B_Z(\mathrm{Rm}) + B_Z(-\mathrm{Rm}))/2$$
$$B_{odd} = (B_Z(\mathrm{Rm}) - B_Z(-\mathrm{Rm}))/2$$

Toroidal field 35Gs

-Time evolution of the even part of the induced magnetic field measured by the coil (left and right diverters);

-corresponding curves for the odd part.

Local transverse field in Ga flow

- 1 channel
- 2 diverter
- 3 magnet
- 4 3D probe

- 5 box
- 6 motor
- 7 brake

Imposed field

Induced field

Induction mechanism

Solid-like rotation

Local rotation

Time evolution

no diverters

right diverters

\phi=90 degr.

empty channel

Ga without diverters

Right diverters

Left diverters

no diverters

right diverters

left diverters

Symmetries

counterclockwise

Kinetic energy (water experiment) Magnetic energy (gallium experiment)

Magnetic Field Pulsations

Pulsations energy in the band 10<f<40 Hz